

Von Misserfolgen in KI-Projekten – und was wir daraus lernten

Swiss Mechatronics Day 2024

4. Juli 2024, Technopark Zürich Dr. sc. nat. Simon Kurmann

Worum es in dieser Präsentation geht

- 3 Beispiele für reale Projekte, die nicht erfolgreich waren.
 - Anonymisiert!
- Was waren die zentralen Probleme?
- Wie können wir in Zukunft diese zentralen Probleme vermeiden oder wenigstens ihre Auswirkungen begrenzen?

Beispiel 1Bilderkennung für ein Medizingerät

Kontext

- Intelligenter Abfalleimer
- Medizinisches Umfeld
- Zentrale Aufgaben:
 - Sichere Entsorgung
 - Erkennung von eingeworfenen Medikamentenbehältern

Ziele

- KI zur Erkennung von Medikamentenbehälter
- Definierte Liste von Medikamentenbehältern
- Hohe Zuverlässigkeit auch bei Verschmutzung

Problem

- Hardware-Änderungen ohne Berücksichtigung der KI
 - → Annahmen der KI nicht mehr erfüllt
 - → Mehraufwand für KI-Entwicklung

Ergebnis

- Bilderkennung auf dem Gerät
- Fehlerrate: 1 in ~500 Tests

Zusätzliches Ziel (nachträglich hinzugefügt)

- Erweitere KI um Erkennung von gefährlichen Objekten
- Verhindere Gefahr für Nutzer

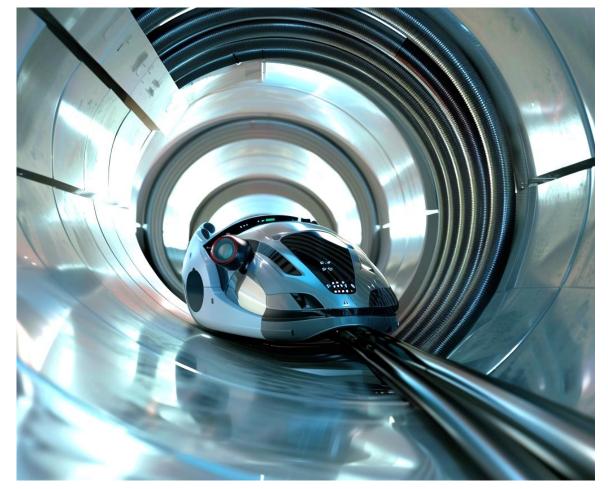
Neues Problem

Unklare Aufgabenstellung: Was ist ein «gefährliches Objekt»?

Finales Ergebnis

Keine sinnvolle Lösung bis Projektabbruch

Beispiel 2 Sauberkeitsbeurteilung



Beispiel 2: Sauberkeitsbeurteilung

Kontext

- Gerät zur Reinigung von Infrastruktur
- Integrierte Kamera
- Aufzeichnung von Videos während Reinigung
 - → Upload in Cloud
- Beurteilung der Sauberkeit durch Experten mittels Videos

Symbolbild

Beispiel 2: Sauberkeitsbeurteilung

Ziele

- KI für Beurteilung der Sauberkeit
- Reduktion des Aufwands für Sauberkeitsbeurteilung

Symbolbild


Beispiel 2: Sauberkeitsbeurteilung

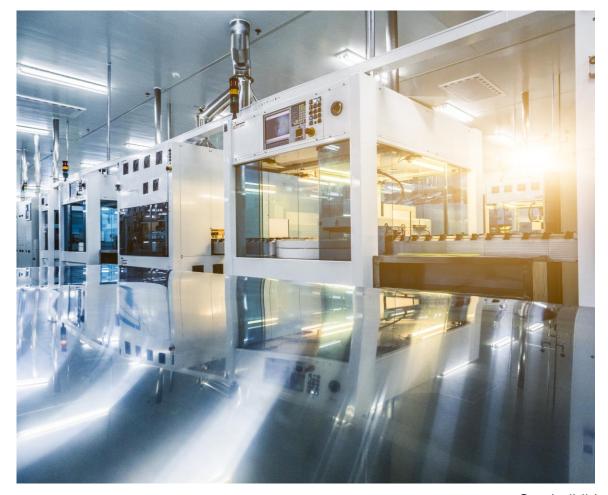
Problem

- Keine Referenzwerte
 - Uneinigkeit zwischen Experten
 - Keine zeitliche Konsistenz zu erwarten
 - → Abweichung von Expertenmeinung unvermeidlich
- Nutzer der KI tolerieren keine Fehler

Ergebnis

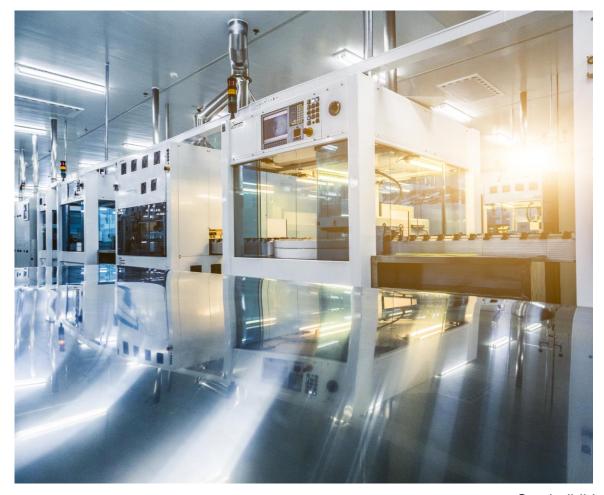
Projektabbruch

Symbolbild



Kontext

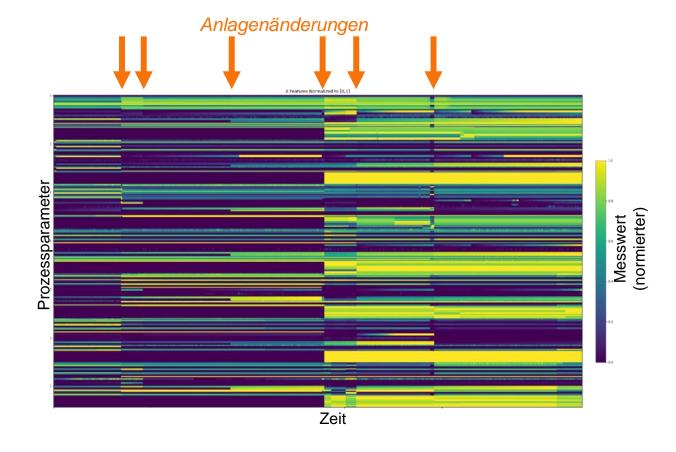
- Komplexer Produktionsprozess in 30+ Zellen
- 289 Qualitätsmetriken
- Verschiedene Produkte auf der gleichen Anlage
- Schwieriges Einstellen der Anlage
- >800 Messwerten in den Zellen
- Vorhanden: 54'000 Datenpunkte des häufigsten Produktes


Symbolbild

Ziele

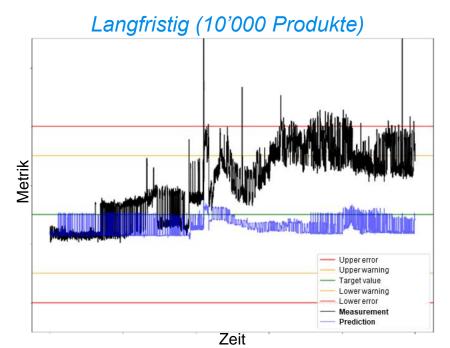
- KI für Vorhersage von Produktionsqualität
 - Input: Prozessdaten
 - Unterstützung von Operatoren
 - V.a. beim Einstellen der Anlage
- Vertieftes Verständnis für den Produktionsprozess

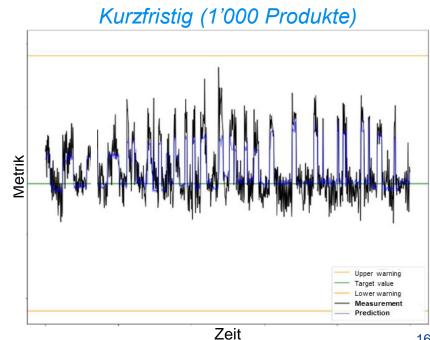
Symbolbild



Problem

- Varianz in den Daten
 - gross bei Anlagenänderungen,
 - klein sonst
 - → 'Effektive' Datenmenge zu klein für KI-Training!
- Benötigte Datenmenge: 20+ Jahre



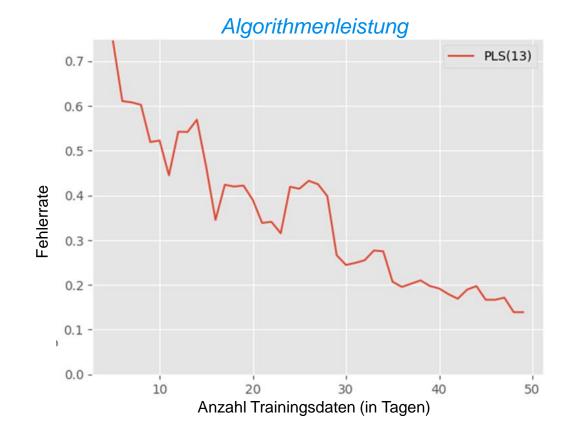

Problem

- Varianz in den Daten
 - gross bei Anlagenänderungen,
 - klein sonst
 - → 'Effektive' Datenmenge zu klein für KI-Training!
- Benötigte Datenmenge: 20+ Jahre

Ergebnisse

- Vorhersagen versagen
 - langfristig
 - beim Einstellen
- Brauchbare Vorhersagen:
 - kurzfristig
 - bei bekanntem Niveau

Predictive Quality: Neuausrichtung (laufendes Projekt) Beispiel 1 fortgesetzt



Neues Ziel

 Vorhersage: «Wie ändern sich die Produkteigenschaften durch einen nachgelagerten externen Verarbeitungsschritt?»

Ergebnisse


- Prototypen-Algorithmus zeigt Machbarkeit
- Anwendungsreife möglich mit akzeptablem Aufwand

Was wir daraus gelernt haben

Technische vs. anwendungsseitige Probleme

Beispiel	Anwendungsseitig Problem → Folge	Technisch Problem → Folge
Bilderkennung für Medizingerät	Unklare Aufgabenstellung → Keine Lösung	Unpassendes Systemdesign → Mehraufwand
Sauberkeitsbeurteilung	Keine Referenzwerte → Projektabbruch	
Predictive Quality		Unzureichende Datenvielfalt → Neuausrichtung

Technische Probleme sind eher lösbar als solche in der Anwendungsdefinition.

Was wir daraus gelernt haben für die Entwicklung von KI

Vor einem Projekt

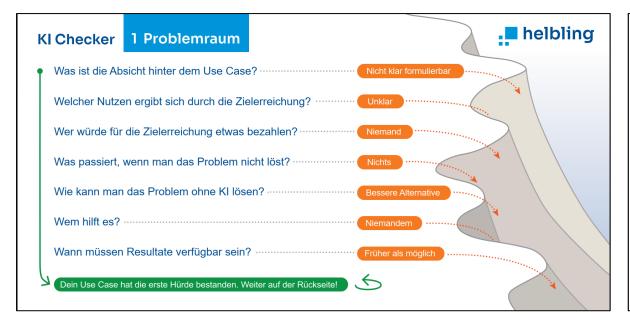
- Denke zuerst die ganze Anwendung und die Rolle der KI durch
 - ✓ aus Sicht des Nutzers:

«Was muss die KI leisten, um einen skeptischen Nutzer zu überzeugen?»

✓ von der KI her:

«Wie kann die KI das leisten?»

 Stelle sicher, dass du klare Referenzwerte für das Training angeben kannst.


Während des Projekts

- Ändert sich die Aufgabe der KI, dann denke die Anwendung erneut wie oben durch.
- KI ist kein Allheilmittel für Lücken im Systemdesign.
- Sei bereit, die Anwendung an die Daten anzupassen.

KI-Checker: Hilfsmittel für Ersteinschätzung von KI Use Cases

The road to wisdom

The road to wisdom? – Well, it's plain And simple to express:

Err and err and err again, but less and less

and less.

- Piet Hein

Ihre Ansprechpartner

Simon Kurmann simon.kurmann@helbling.ch

Helbling Technik AG Schachenallee 29 CH-5000 Aarau T +41 62 836 45 20 www.helbling.ch

André Wangler andre.wangler@helbling.ch

